Evaluating the Impact of New Technologies Using Simulation: The Case for Mining Software Repositories

David M. Raffo, Ph.D., Portland State University Tim Menzies, Ph.D., Portland State University

Agenda

- Motivation
- Learned Defect Detectors Highlights
- Process Simulation Highlights
- Model Overview
- Three Scenarios and Results
- Conclusions

Motivation

- Good new technologies are wasted
 - unless there is a compelling business case to use them
- Without such a case:
 - Managers not convinced
 - No reallocation of scarce resources
- Good technology: data mining defect detectors
 - increased PDs (probability of detection)
 - Lower PFs (probability of false alarm)
 - Lower inspection effort (more time for other, more specialized methods
- This talk:
 - The business case
 - Developed via process simulation

Things to Point Out...

- Synergistic research of multiple projects sponsored by NASA
- Analysis assessing the potential impact of a new tool NASA has been investing in
- Identifying new and creative ways that the tool can be applied to benefit NASA
- Detailed level of analysis
- "Field of Dreams" message for providing data. If you provide it, useful results will come.

- Data miners learn detect detectors from static code measures (McCabe and Halstead)at the module level.
 - Not perfect: widely deprecated (Shepherd, Fenton, and others)
 - Adequate as partial indicators (but watch that false alarm rate)

has defect							
No	Yes						
Α	В	detector silent					
C	D	detector triggered					
accuracy= (a+d)/(a+b+c+d) pd = detection (or recall) = d/(b+d) pf = false alarms = c/(a+c) prec = d/(c+d) Effort = (C.loc + D.loc)/ (ABCD.loc)							

But, so what?

Is any of the above <u>useful</u>?

Introducing - Process Simulation

- One area that can help companies improve their processes is *Process Simulation*.
- Process Simulation supports organizations to address
 - Strategic management
 - Process Planning
 - Control and operational management
 - Technology adoption
 - Understanding
 - Training and learning
 - Quantitative process management and other
 CMMI-Based Process Improvement

Features of Process Simulation and PTAM

- Based on extensive research.
- Graphical user interface and models software processes
- Utilizes SEI methods to define SW Processes
- Integrates metrics related to cost, quality, and schedule into understandable performance picture.
- Predicts project-level impacts of process improvements in terms of cost, quality and cycle time
- Support business case analysis of process decisions
 ROI, NPV and quantitatively assessing risk.
- Designed for Rapid Deployment

Importance/Benefits – Enduring Needs

- NASA Project Level
 - Software Quality Assurance Strategy
 Evaluation for NASA Projects
 - Independent Bottoms-Up NASA Project Cost Estimation
 - NASA Contractor Bid Evaluation
 - Software Assurance Replanning
 - Cost/Benefit Evaluation of new technologies and tools

Importance/Benefits – Enduring Needs

- IV&V Level
 - IV&V New Business Planning (Independent Bottoms-Up Cost Estimation for NASA Projects and for IV&V)
 - IV&V Policy Research (IV&V strategies for alternative NASA Project types)
 - IV&V Services Contract Bid Support
 - IV&V Services Replanning
 - Cost/Benefit Evaluation of new technologies and tools
 - Space Science Data Mining

General Approach

Software Development Process

Project Data Process and Product

Goal

- In this paper, we assess the impact of these learned defect detectors on a "typical" large-scale NASA project in terms of overall cost, quality and schedule performance
- Goal: To determine when these learned detectors might be useful and when they might be useless by providing a business case to support the adoption of these tools.

Business Case Questions

- What is the impact of applying new tools and technologies?
- What is the economic benefit or value of the tool or technology? What is the *Return on Investment*?
- Under what conditions does the tool or technology perform best? Under what conditions does it perform poorly?
- What performance standards does the tool need to achieve in order to have a positive performance impact on the project/organization?
- Are there alternative ways to apply the tool or technology that enable it to provide a more positive impact?

Model Overview

Description of Model

- IEEE 12207 Software Development Process (commonly used)
- Utilizes actual data from 8 large NASA projects (Size >100 KSLOC)
- 8 major life cycle phases; 86 process steps
- Includes IV&V Layer
- Alternative IV&V application configurations can be compared (ROI)

Assumptions

- Project Size is 100 KSLOC.
- Software process follows the IEEE 12207+IV&V model. True for many DoD and NASA projects.
- %LOC Inspected=PD+5% to 10%; and %LOC is proportional to Effort
- PF = 10%-30%.
- PD=40 to 70%.
- The PD rate assumes, in turn, that defect detectors are learned from data divided below the sub-system level.
- Standard manual inspections find 40% to 60% of the total defects.
- Perspective Based inspections find 80% to 90% of latent defects
- Defects uniformly distributed throughout code

30 detectors, sorted by effort

Scenario I - Applying LDD to V&V

- Learned defect detectors are applied during project V&V.
 - Inspections are conducted on 11.5% of code to learn defect detectors
 - LDDs then applied to remaining code to identify highrisk portions of the system
 - Explored the impact of using higher PD combined with higher PF
 - Explored the impact of using regular inspections(weak training set) vs Perspective Based inspections (strong training set) for LDDs.

Changes to the Process

Scenario I - Results Summary

- Model recommendations for specific scenarios
- M³ Rule (Martha, Menzies, McGill Rule) Learned Defect Detector Rule:

PD_V&V* %Code_Inspected*95%<= PDL* PDI_TS

Where:

PD_V&V - Probability of detection of V&V inspections

%Code_Inspected - % of code inspected during V&V

PDL – Probability of Detection for LDDs

PDI_TS – Probability detection of Training Set inspections

Scenario I - Results Summary

- LDDs are *Useful* (Significant benefits) in a V&V setting when:
 - -53% or less of the code is inspected during V&V (manned vs unmanned missions) using regular inspections and LDD PD =50%
 - Using high PD mode and Perspective based inspections
 - Project inspections are poor
- Applying LDDs to V&V are *Useless* when:
 - Project inspections are good or high quality
 - More than 53% of the code is inspected by V&V (typical for manned missions)

Scenario II - Applying LDD to IV&V

- Learned Defect Detectors (LDD) applied to IV&V (Shedding light on blind spots)
 - Project generated training sets (regular inspections)
 - Investigated the Impact of applying LDD to different project types (varied amount of code that is reinspected (100%-25%))
 - Varied the effectiveness of reinspection (2%-10%)

Changes to the Process – IV&V

<u> 4</u> [599][0)] Activity, IV	ŧν					
Activity	Formulas (1)	Formulas (2)	Formulas (3)	Animate/Results/Comment	(S		
Processes an entity based on contract duration or resources used. OK							
	Resource Pools	IVV_Staff None	(Primary) (Secondary)	Cance			
	IV&V Phase	: 1	IV&V Process (Step: 1			
	Desired Staff	: 4	Pro	ocess Criticality Levels: 🗌 - (🗀 - (
	Earned Value	: 0.002		₩ - (
Sche	edule/Effort Ratio	: 1.00		▽ - (▽ <u>- (</u>			
Anomaly	Detection Rates	(1) (2)	(3) (4)	(5) (6)			
Ave	rage IV&V Efforts	(1) (2)	(3) (4) 0.2	(5) (6) 0			
Anomaly A	djustment Rates	(1) (2)	(3) (4)	(5) (6)			
Help V&	V Inspection	▼	1		Y		

Scenario II - Results

- Clear recommendations for specific scenarios
- Results (Excellent Application):
 - Low Risk = 1.2 PM with no defects detected
 - Improves quality if any defects are found (detection capability > 0)
 - Receive added assurance even if detection capability is 0
 - For Manned Missions, (100% reinspection), breakeven on total project effort if IV&V reinspection effectiveness = 2%
 - Significantly improves cost, quality and schedule if reinspection effectiveness is >= 5%

Scenario II - Results

- Significant up side potential when LDDs are used to identify high risk portions of the code that were not previously inspected during project level V&V (unmanned missions).
- At 50% code inspected by V&V, 4%-7.5% reduction in delivered defects
- At 25% code inspected during V&V, reductions in delivered defects range from 15%-24%. Effort savings range from 18 PMs to 29 PMs.

Conclusions – Mission Accomplished

- Learned Defect Detectors are useful when they increase the overall detection capability of the Coding phase.
- M³ Rule (Martha, Menzies, McGill Rule) –
 PD_V&V* %Code_Inspected*95%<= PDL* PDI_TS
- This occurs when:
 - Less than 53% of code is inspected during V&V or V&V has week inspections
 - Used as IV&V technique identifying blind spots and augmenting regular high-quality V&V
 - V&V has weak inspections

Conclusions – Mission Accomplished

- Learned Defect Detectors are useless when they decrease the overall detection capability of the Coding phase.
- This occurs when:
 - Used to frivolously cut costs by replacing high quality code inspections.

Conclusions – Broader Impacts

- Identify the conditions under which application of a new technology would be beneficial and when applying this technology would not be beneficial.
- We can define performance benchmarks/ criteria that a new technology needs to achieve.

Conclusions – Broader Impacts

- We can diagnose problems associated with implementing a new tool or technology and identify new ways to apply the technology to the benefit of the organization (and the vendors)
- Finally, we can do all this before the technology is purchased or applied and therefore can save scarce resources available for process improvement.

Conclusions – Broader Impacts

- Synergistic research of multiple projects sponsored by NASA
- Process Simulation enabled us to do a detailed analysis of a new tool that NASA has been investing in
- More data please, it can be used to NASA's advantage!

The End

Questions?

